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THEORETICAL AND PRACTICAL ASPECTS OF SINGULARITY
AND EIGENMODE EXPANSION METHODS
*
A. G. Ramm
§1. Irtroduction.
, Vust literat:re has been wricten on sincularity and cigen-
! node expansion methods during the last decade. Engineers asnd

|

|

|

)

i
phycicists stimulated interest in the subject (see [1], (27, }.
[3] and references given in this review). DlMathematical anatsis !
of the problems was initiated in [4], [5] and was pushed con-
siderably further by M. Agranovich (see [1]). Nevertheless
many dguestions in the theory are open and of considerahle intorast b
to enginecrs and mathematicians. The purpose of this paper can

be summarized as follows: We are going to explain in a siwmple

way the principal features of the singularity and eiyenmodc

expansion methods and to formulate explicitly 1) what has boon

used by engineers with proof, 2) what is importart €or practices

f

3)  what hes been rigorously establishicd and 4) what 2r2 the

urnsolved mathematical problems in this field.

* ] 3 . 13
Address: Department of Mathematics, University of Michigan,
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The main results obtained in scalar wave scattering thcory

were generalized to electromagnetic wave scattering without

much difficultv. That is why and alsc for simplicity we restrict

ourselves by the presentation of the theory for scalar wave

scattering.

What are singularity and ecigenmode expansion methods

wn
Ny
.

(SEM and LEEM)?

1. What is EEM?

Consider the problem

n (v2 + x%u =0 in @

D, k7 >0, (1)

0
e

u = u

+ v zexp{ik (i ,x)} + v (3) 3

0

and v satisfies the radiation condition

5%¥T - ikv = ofl]x

I' 1is the smwooth surface of a finite obstacle D.

Here

in the form

If we look for a solution of (1) - (4)

)

exn(ikr
plikr o

t

f(t)dt, X, o ST o (5)

4 4wy
0 | "y




then

A(k) £

1

exp(ikrst)
f 45y

f(t) dt = - uo(s) , s €. (6)
st

1\
The EEM method can now be explained as follows. Suppose that

the set of cigenvectors of operator A(k)

A(K)e. = x.(k)eo. , ) = 1,2,0.0...
( )¢J >J( )¢J j 1 (7)

forms a Riesz basis of LZ(P) = H. This means that any g € H

can be expanded in the series

and

8

ey oll> < 3 a5 <o, llali®, ¢, >0, (9)

|
j=1
where {[g|| is the norm in LZ(P). The inequality (9) substi-
tutes the Parscval equality for orthonormal bases. A complete
system in H does not nccessarily form a basis of H (example:
n = 12[0,1], the systen 0,00 = %), 3 =0,1,2,...: Not

every g € L2[0,l] can be expandcd in the series c¢(x) = z;=0 gjxJ

If the assumntion made is true, then eguation (6) can be

solved by the Picard formula

f(s) = -

u o,
01 s (s) (10)
LK) )

Ho~13

3
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where the coefficients are uniguely defined by the eguality

This method of solution of the scattering problem (1)-::
is called EEM. It was used without mathematical analysis
by onglneers Iyy, i3). The guestions, which immediately
arisc, can be tormulated as follows: 1) Is it truc that the
nonselfadjoint operator A(k) has eigenvectors (e.g. Volterra
operator has no eigenvectors); 2) Is it true that the set of
eigenvectors of A(k) forms a Riesz basis of H; 3) suppose
that the set of eigenvectors (:z eigensystem) of A(k) does
not form a Riesz basis of H. 1Is it true that the root system

of A(k) forms a Riesz basis of H ?

Let us explain the root system. Let A be a linear operator
on H a9 = \p, ¢ # 0. Consider equation A¢1 -A¢l = ¢. If
this e~ . =-.2i 1s solvable, ¢y is called a root vector of A
corresponding to eigenvalue X and eigenvector ¢. If ¢l exists
consider equations A¢k —A¢k = ¢k—1* k > 1. 1It is known [7]
that onlya finite number r of rool vectors dpreeeaby associatced
with ( exist. The chajn(¢,¢l,...,¢r) is called a Jordan chain
with the length r + 1. The union of all root vectors of a
linear operator A corresponding to all eigenvalues of B is
called the root system of A. It is well known from linear algebra

that the eilgensystem of a nonselfadjoint operator may not

form a basis. For cxample if the operator A is an operator

S S acseem.
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in ]R2 with the matrix A = ( ) , then A Las only one

0 1
eigenvector so that the eigensystem of A does not form a
basis of IRZ. It is also known that the root system of any
linear operator (matrix) in IR forms a basis of IR". Of
course in IR" any basis is Riesz basis. 1In a Hilbert space
(infinite dimensional space) this is not true. For practice
it is important to have affirmatiwve answers for questions 1)
and 3). Indeed, if the eigensystem of A(k) does not form a

Riesz basis but its root system forms a Riesz basis of H, then

it is still possible to solve equation (6) using the root

system of A.

2. What is SEM?

In order to explain what SEM is, consider the problem

U, - su=0 in Q; uh,= 0; ufg =0, ut't=0 = £(x), (12)

where £ € C. (a smooth function which vanishes for large |x|.

0

If G(x,y,-pz) is the Green function of the problem

(- + p2)G = §(x -~ y) in @, G|r = 0, Rep >0 (13)

then the solution of (12) can be written as

1 C + joo _
v 271 [ . exp(pt) U(x,p) dp, (124>
C =1l

Lohad
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where

u(x,p) = f G(x,y,—Pz)f(Y)dY (15)
Q

Suppose that u(x,p) is meromeorphic in p on the whole
complex plarne p (this is actuelly true [8;-[12)) and suppose

the following estimate is valid

|u(x,p)| < —S——, a > 1/2, c=const.> 0, Rep > -2,
T 1+]pl® (16)
|[Imp| > N, |
where A > 0 is arbitrary. ;
This estimate follows from the Lax-Phillips result [12) 3
and the argumcnts given in [9), [10], [13]. Under the assump- ' ?

tions made, the contour of integration in (14) can be moved to

the left and one gets

N
u = X cjt J exp(pjt) +o(exp(-Re pNt)) (17)

where pj arc the poles of G(x, Yy, —pz), bj are the mul-
tiplicity of the pole pj. Expansion (17) is called the SEM
cxpansion. Actually such expansions were knrown for a long time
for various concrete problens of mathematical physics (especially
in cascs when the solution can be represented explicitly in

the form of series). The main difficulty i¢ to prowve estimate

o . . : 12
(16) which allows us Lo move the contour on intojration ‘n»n (14),

T{ only the morporphic naeture of  ufly,p) o0 o frvet
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is establishad, then no .. - ngion~ of the tyra (17) can
be proved in general bocause thece is a possihility that poles
-c_ ¥ i with very small ¢ _ > 0 and very large can

n n n n

exist. The general Mittag-L8ffler reprosentation can not be
applied for derivation of SEM cxpansicn (17), bhccauvse this
representation uses special system of expanding contours, winile
the derivation of (17) requires the possibility to move our
particular contour (¢ =1~, c +i=) to the left. From a prac-
tical point of view, the SEN expansion is used at present
according to the following scheme:

Suppose that only a fecw terms in (17) arc cssential, e.qg.

3

in experiments the transient field u(x,t) is uncasurcd and

1-3. This will be true if |Re pjl > Rep for 3 > 3. Then

each pj, 3 =1,2,3 is determined. It is assuasd that the

. . - 2
location of these complex poles of the Greon function G(x,y,-p")

can ¢give information enough to identify the obstaclie (the

—-

scatterer D). This assumption has not been bocked t

Nevertheless, if there is a finite sct of scatters (say flving

targets) it is possible to bolicve that a one to one corre-

[N

spondence can he estsbli:shed cmpirvically betvoen the scattorers

and the corvespo.ding conslexw yolaon.

An interestirg inveorss prorle oy can ke formalated in con-

nection with Ul

Inverse prohlem: Civen a cor ol cont o arhrs oy,
}
Re . < 0, 1 [ STe] L ¢ ! e nn
¢ . _]
Green functic: oo, ; f Do s
! L) . f
1’ - iowrs b G T -

woretically.
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What restrictions must be imrosed on the set {pJ:, Re Uj < 0

.

in order that this sct will be the set of complex poles of the

Green function of a scatterer?

If the scatterer 1 a star-like body and the boundary con-

dition is the

Dirichlet condition then the sct {pj} must

E satisfy the condition |Re pjl >a 1n |Im pj] + b, a >0 [12]}.

It scems that no other information on the problem is available.

) From a practical point of view this problem may not be so

important as it seems. First, only a few complex poles are

available.

It seems hopeless to make any general conclusions

about the scaterer from this information without severe restric-

tions on the set of scatterers. (For example, 1if it is apriori

known that the scatterer is a ball, it is possible to determine

its radius from the above information.) That is why this author

thinks that from a practical point of view in order to use the

SEM for identification of scatterers it is more useful to work

out tables of responses of the typical scatterers, then to try

to develop a theory of the posed (which is very interesting

from a theoretical point of view) inverse problem.

w=n*iona arise naturally in conusction

1) Doos v roou svanon o0 YL integral operators in




3) Do the complex poles of the Green function depend

i continuously on the obstacle? 1In more detail: suppose that
xj = xj(tl’tz)' 1< tl,t2 < 1 are parametric equations of

r, YJ = xj(tlltz) + Czj(tlltz)l 0 < t

l't25-1'0<cil

are parametric equations of the surface of perturbed scatterer.

Let us assume that xj(t), zj(t) € CZ(A), t = tl’tz' A =

{ti < tl’t2 < 1}. Let us fix an arbitrary number R > 0 and

let pj, 1 < j < r(R) be the complex poles of the unperturbed
Green function which lie in the circle |pj] < R. Let pj(g)

be the complex poles of the perturbed Green function. Our

question can now be formulated as follows: is it true that
ple) - pj, as ¢ » 0, wuniformly in 1 < j < n(R) provided

that the numeration of pj(a) is properly done? ]

4) How can one calculate the complex poles?

5) What are sufficient conditions for the validity of SEM =

expansion (17)?

6) 1Is it possible to calculate complex poles via calcula-

tion of zeros of some functions?

§3. What has been rigorously established in EEM and SEM methods?

In this section we give answers to questions 1)-6) of

Section 2.3. WNo proofs will be given but the results obtained

will be formulated and references will be given. Proofs are
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omitted for three reasons: 1) they are difficult for encinoars,

2) they are long, and 3) they can found in the cited papors.

1. In order to formulate the answor to guestion 1) of Secticon
2.3 we must explain what a Riesz bhasis with brackets is. Let

{fj} be an orthonorinal basis of H, {hj} be & corrlote and

minimal systen in H. (A complcte systom {hj} is called minimal
if the system {hj}\\hk is not coupletc {or any k, k = 1,2,3... .
In othoer words il we raimove any elemont hk of ocur system, we
obtain an incomplete system). Lot my <M, <. be an avbi-
trary inecreasing scguence of intaoyers; Fj is the linear space
with the basis {fm. ,fm. _+1,,,,,fm _l}; IH is the linear
j-1 J-1 5
space with the basis {hm. ""’hm.—l} . Suppose that thorc
j-1 3
exists a linear bounded operator B with bounded B"], cdefined
on all 1, such that an =F., 3 =1,2,... . Then the systiem
{hj} is called a Riesz basis of H with brackcts. 7This defi-
nition is equivalent (sce [141) to the following. lLet Pj be
projectors in  H  onto Hj' Suppose that for any f € H,.
ey NE211 < 3 hegeli® < oy lifl?, ey s 0,
i=1 "
then the system {hj] is called a Ricesz hesis of H with
brackets.
It is wprov.d *hat thu root systen of oprrotor Mk) (see 1
formula (6)) foras & Riecsz basis with brackoets [6]. THG  $ame . P

-10-
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is true for the operator arising in the exterior Neumann
1 boundary valuec problem (1], {6]. The same is also true for the

! electrodynanics scattering problem [1].

i 2. If the integral operator of the diffraction problem is 1
1 normal then its eigensystem coincides with its root systen.
This is the case in the problem (1)-(4) for a spherical surface
o I and for a linear antenna. First this was observed in [5].
An operator is called normal if A*A = AA*, where A* 1is the
i adjoint operator. The condition AA* = A*A is the condition on

; I' provided that the kernel of the integral operator A is given.

(see [5] for details).

3. The answer to question 3 from section 2.3 is affirmative

(see [6] for details).

4. A general method (with the proof of its convergence) for
calculating the complex poles of the Green's functions in dif-
fraction and potential scattering theory was given in [4), {[15]
(alsc see [6]). The method can be explained for the problem

with the impedance boundary condition

2 2 _ . ou _ =
(v + kX )u=0 in g, N h11|r =0 (18)

where h = const., Re h > 0, N is the outer normal to T

We look for a solution of the problem without sources in the

form

-11-




T R T R e

o {t) dt . (19)

From (19) and (18) it follows that

o= Qg , (20) )

where

4
[{p}

5 (21}

J exp({frst) J exP(lkrS_l .
r BNt Zr.-rst r

Let {Qj} be a Riesz basis of H = LZ(F),

N
g,, = c. o. . 22)
N ijl 373 (
Substituting (22) in (20) and multiplying by éi in H we ,
obtain:
N
b..{(k)c. =0, 1 <1 <N; b..(K)=68..=-(09., ¢&.). (23)
zj=1 13( ) 3 < 1< lJ( ) 835 (O@J ¢;)

This system has nontrivial solutions if and only if
det bij(k) = 0. (24)

The left -hand side of (24) is an entire function of k. Let
kéN) be its roots. Then there exist the limits 1lim kéw) = k
N

and km are the polus of the Green function corresponding to

n

the problem {18). Mzvroovor, all the complex poles can be obtainod .
by this method. Proofs are given in [4], [15], [6]. From a

-~

practic.? , o0 of view there are two nontrivial points in per-

~12-




forming this method. 1) calculation of bij(k) by foriul.
(23) and 2) numerical solution of eguation (24). F'or bhoth
steps there are methods available in the literature on

nunerical analysis.

5. Sufficient conditions for the validity of SEif expansion

(17) were given in Section 2.

6. The set of the complex poles of the Green function of
the problem (1) - (4) coincides with the set of the complex

zeros of the eigenvalues pn(k) of the operator A(k):

A(k)¢n = pn(k)¢nr n = 112’--- . (25)
Indced, let G = R(X'X% + ..., 1l.e. z 1is a pole of the Greoen
(k-2z)
function G, GlF = 0,
exp(ier )
G =g - Jg(xvtvl)u (tIYIk)dtr g = “‘"—4""’;"‘ Y ’ (26)
T 'lT.ny
3G
B o= —a—ﬁ;- .

Multiplying (26) by (k - z)* and taking k » z, we get

J g{x,t,z) N dt = 0, X €T . (27)
r

The kernel R(t,y) is degenerate. Thus a function ¢ § 0 exists

suich that

f g(x,t;z) &6(t)dt = 0 (28)
r




| This moears that k = z  is a z¢vo of soae of the {une! tons

.n(k). Conversely, if

b
-
o

is a solution of (28), than

u ==

———

g, t;z) ¢(t)dr (29)

1s a sclution of theo problem

(?2 + z2)u =0 in ¢, uf =0 (30)

‘ with the outgoing asvmphotic at infinity. Hence u = 0 in @

1 if 2z is not a poule of G. Since 22 is complex, u(x) = 0

; in D (as a solution of the homogencous interior problem).

{ By the houndary value jump relation . = 0. This contradiction
proves that z  is a pole of G. A variational rethod for cal-
culation of eigenvalucs of nonselfadjoint compact operators '

: is given in [6].

{

|
54. Open provlems.

1) The inverse problem forumwlated in Section 2 is of
interest, It is vory interesting to have partial answors:
what informatior about the geoowetry of a scatiorer can bho
obtained from the locaticn of the complex polow

‘ 2) There is a conjocture {3] that tae corlex poloes of

1 the Green function of tnce problem (i) -{4) for a convew simaoth
| compact boundary arc simple. It would be interesting to prove
3 it or to give a countercxamyle.,

~14~-




3) Tt vould be interesting to porform nownerically method
deserihd in Soction 3.6 in sorw prectical probiems.

4) In [16] somwe progerties of the purely real peles Re

lin . = 0 woere established. It would be interesting to t

wiat infornnation about the geowetry of an abstacle can be

obtainsd {ruw the Jocation of the purely real poles. in the

literature the coawsplos plane k= ip  is usually used.  0On
plane the purcly real com; lex poles are purvely iwmagiiiary,

Re kj = 0, Iin k. < 0.

-15%-
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